OCCURRENCE OF BACTERIAL CANKER OF TOMATO IN HIMACHAL PRADESH, INDIA: IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF THE PATHOGEN

GURVINDER SINGH*, NARENDER K. BHARAT AND MONICA SHARMA
Department of Plant Pathology,
Dr. Y.S. Parmar University of Horticulture & Forestry, Nauni, Solan -173 230 (HP) INDIA
e-mail: gurvinders50@yahoo.com

INTRODUCTION

Tomato (Solanum lycopersicum L.) is the most important vegetable crop grown word wide. Various fungi, bacteria, viruses and other pathogens are known to affect the crop in all tomato growing countries including India. Recently bacterial canker caused by Clavibacter michiganensis subsp. michiganensis has emerged as a major disease of tomato in open as well as protected cultivation conditions in the southern parts of the country caused huge losses to the growers (Sarala and Shetty, 2005; Umesh, 2006). The pathogen is very destructive and causes wilting and stunting of plants, necrosis of leaves, necrotic lesions on fruit, discoloration of vascular tissues and death of severely infected plants. It requires relatively warm temperature and high relative humidity for infection and development. It is known to spread through contaminated seed to the new areas (Chang and Pataki, 1992). Due to seed transmission the disease spread to the areas where the disease was not reported earlier. The farmers usually applied control measures meant for fungal diseases due to ignorance. Under present investigation the attempt was therefore, made for the first time to know the status of this disease in the main tomato growing areas of the state and to identify the bacterial pathogen on the basis of various parameters including molecular characterization.

MATERIALS AND METHODS

Disease occurrence

Periodic surveys of tomato growing localities in Solan and Sirmour districts of Himachal Pradesh were undertaken to record the occurrence of bacterial canker during crop season of 2013. Disease incidence was recorded after observing tomato plants showing typical symptoms of the disease as discussed by Umesh (2006) and Sahu et al. (2013). Disease severity was recorded with the help of 0-5 scale, developed with slight modification in the scale of Bogo and Takatsa (1997) and Shukla and Gupta (2005) and the per cent disease severity was calculated as per the method of McKinney (1923).

Isolation, identification and characterization of the bacterium

The bacterial canker pathogen was isolated from infected tomato plants on nutrient agar (NA) medium as per the method described by Schaad et al. (2001) and Shivalingaiah and...
Umesha (2011). Different isolates of the bacterial pathogen were isolated and purified by streak plate method and maintained on NA at 4°C for further studies. The colony characters of the bacteria viz., colour, size, shape etc. were recorded as per Schaad et al. (2001). The physiological and biochemical tests viz., Gram reaction, growth on TTC, gelatin liquefaction, casein hydrolysis, soluble starch hydrolysis, esculin hydrolysis, presence of catalase and oxidase, growth at 40°C and levan production from sucrose were performed as per the methods given by Holt et al. (1994), Bradbury (1986) and Schaad et al. (2001).

Pathogenicity test

For pathogenicity tests, 25 to 30 days old tomato plants of susceptible cultivar ArkaVikas were grown in earthen pots containing sterilized soil under glasshouse condition. The plants were inoculated with bacterial culture and evaluated for appearance of disease symptoms as per the method followed by Foster and Chandi (1973).

Molecular characterization

Extraction of genomic DNA: Total genomic DNA of bacterial isolates was extracted using CTAB method of Doyle and Doyle (1987). The extracted DNA was stored at -20°C in deep freezer for further studies and the quality and quantity of DNA was checked on 0.8 per cent agarose gel (Mills et al., 1997). The extracted DNA was stored at -20°C in deep freezer for further studies and the quality and quantity of DNA was checked on 0.8 per cent agarose gel (Mills et al., 1997). Total genomic DNA of bacterial isolates was extracted using CTAB method of Doyle and Doyle (1987). The extracted DNA was stored at -20°C in deep freezer for further studies and the quality and quantity of DNA was checked on 0.8 per cent agarose gel (Mills et al., 1997).

PCR reaction conditions

Amplification of genomic DNA of bacterial isolates was performed by polymerase chain reaction (PCR) in Applied Biosystem Thermal Cycler as per the procedure followed by Lee et al. (1997). First direct PCR was carried out with a set of two specific primer pairs for *Clavibacter michiganensis*, CMR 16F1 (5’ - GTG ATG TCA GAG CTT GCT GTG GAT C GTA-3’) and CMR 16R1 (5’ - CCG CTA CTT GAC TTA GT-3’); CMR 16F2 (5’ - CCC CGA CTC TGG GAT AAC TGC TA-3’) and CMR 16R2 (5’ - CGG TTA GGC CAC TGG CTT CGG GTG TTA CCG A-3’) designed from the 16S rDNA region. The reaction was performed in final volume of 25 μl containing 1 × PCR Buffer, dNTP mix (0.2 mm each of dCTP, dGTP, dATP and dTTP), 0.5 μm each forward (CMR F1) and reverse primer (CMR R1), 1 unit of Taq DNA polymerase (3U/μl), 25-30 ng template DNA. These tubes were placed on thermo-cycler for cyclic amplification. Conditions for amplifications were programmed as initial denaturation (94°C, 5 min), denaturation (94°C, 1 min), annealing (62°C, 2 min), extension (72°C, 3 min) and final extension (72°C, 10 min) for 35 cycles. The nested PCR with the primer pair CMRF1, R1 and CMRF2, R2 was then performed. The amplified products were separated on 1% agarose gel for 1 hour at 60V constant voltage. Gels were stained with 0.5 μg ml-1 ethidium bromide solution and photographed under ultraviolet light using Alpha imager Gel doc system (Sambrook and Russell, 2001).

RESULTS AND DISCUSSION

Disease occurrence

The bacterial canker disease was observed in all the tomato growing localities surveyed in Solan and Sirmour districts of Himachal Pradesh, India during 2013 (Table 1). The overall incidence of the disease was observed up to 30.10 per cent with a severity of 23.68 per cent. Amongst various localities surveyed, the highest incidence of 47.50 per cent with a severity of 43.50 per cent was recorded at Deothal area of Sirmour district. In other localities the incidence varied between 18.50 to 39.50 per cent with a severity of 13.50 to 31.60 per cent. Previously no such surveys were conducted for recording bacterial canker of tomato in Himachal Pradesh. Hence, present investigation is the first attempt to record the occurrence of this disease in the state. However, Sarala and Shetty (2005) and Umesh (2006) have reported the occurrence of bacterial canker of tomato in Himachal Pradesh. Hence, present investigation is the first attempt to record the occurrence of this disease in the state. However, Sarala and Shetty (2005) and Umesh (2006) have reported the occurrence of bacterial canker of tomato in the southern part of India like Karnataka state with an average incidence of 48 per cent. Earlier many workers have described the bacterial canker disease of tomato to be seed borne in nature (Chang et al., 1989; Gitaitsu et al., 1991 and Fatmi et al., 1991). The disease might have appeared in this state through contaminated seed. The seed production farms of most of the seed companies in India are situated in south Indian states like Karnataka and Andhra Pradesh where...
the disease is of common occurrence. Farmers mostly procure seed from private companies (Sarala and Shetty, 2005; Umesha, 2006).

Symptomatology
The disease symptoms appeared on almost all the above ground plant parts viz., leaves, petioles, stem, branches and fruits (Fig. 1 and Fig. 2). Young plants showed poor growth and wilting of branches. The lower leaves of affected plants were yellow, shriveled with dark brown spots usually at the edges and surrounded by yellow halo. In some cases one half of the affected plant showed wilt symptoms while the other half appeared healthy (Fig. 1A & B). The stem of the affected plant developed with scars or cavities at some locations (Fig. 1E). The pith of affected stem appeared reddish brown, especially at the nodes (Fig. 1E). The pith later turned somewhat mealy appearance and hollow. Fruit symptoms as bird’s eye lesions were noticed on severely affected fruits (Fig. 1 and Fig. 2). Young plants showed poor growth and wilt of branches. The lower leaves of affected plants were yellow, shriveled with dark brown spots usually at the edges and surrounded by yellow halo. In some cases one half of the affected plant showed wilt symptoms while the other half appeared healthy (Fig. 1A & B). The stem of the affected plant developed with scars or cavities at some locations (Fig. 1E). The pith of affected stem appeared reddish brown, especially at the nodes (Fig. 1E). The pith later turned somewhat mealy appearance and hollow. Fruit symptoms as bird’s eye lesions were noticed on severely affected fruits (Fig. 1 and Fig. 2). Young plants showed poor growth and wilt of branches. The lower leaves of affected plants were yellow, shriveled with dark brown spots usually at the edges and surrounded by yellow halo. In some cases one half of the affected plant showed wilt symptoms while the other half appeared healthy (Fig. 1A & B). The stem of the affected plant developed with scars or cavities at some locations (Fig. 1E). The pith of affected stem appeared reddish brown, especially at the nodes (Fig. 1E). The pith later turned somewhat mealy appearance and hollow.

Identification and characterization of the pathogen
Morphological characters
Five different isolates of bacterial canker pathogen (Clavibacter michiganensis subsp. michiganensis), Cmm1, Cmm2, Cmm3, Cmm4 and Cmm5 were isolated and purified. The colony characteristics of these isolates were recorded and are presented in Table 2. The colonies of all the isolates were 1-3 mm in diameter and developed within 3 days of inoculation.

Pathogenicity test
Most of the strains of Cmm showed the incubation period between 6 to 9 days when artificially inoculated to the tomato seedlings of cv. ArkaVikas (Table 4). The disease symptoms
were noticed as marginal necrosis with hallow on leaves. Similar results have been observed with various strains of bacterial canker pathogen in tomato by different workers upon artificial inoculation (Chang et al., 1989; Bogo and Takatsa, 1997; Burokiene et al., 2005).

Molecular characterization

Direct PCR with Clavibacter michiganensis specific primer pair CMR 16F1/R1 and nested PCR with C. michiganensis specific primer pair CMR 16F2/R2 revealed that CMR 16F1/R1 and CMR 16F2/R2 amplified (614bp) the genomic DNA of 3 tomato bacterial canker isolates, Cmm1, Cmm2 and Cmm3 (Fig. 3). However, other two isolates, Cmm4 and Cmm5 did not show any amplification. Hence, the isolates Cmm1, Cmm2 and Cmm3 were confirmed to be Clavibacter michiganensis. As these isolates produced characteristic symptoms of bacterial canker on tomato seedlings after artificial inoculation, these were identified as Clavibacter michiganensis ssp. michiganensis (Smith) Davis et al. Nested PCR for detection of Clavibacter michiganensis with these primer pair were also used by Lee et al. (1997) and Kyu et al. (2012).

Previously no such attempt to isolate and detect the bacterial canker pathogen using molecular tools has been carried out in Himachal Pradesh. Hence, the present study provided the first reliable detection of the bacterial canker pathogen Clavibacter michiganensis subsp. michiganensis in the tomato

Figure 1: Symptoms of bacterial canker on tomato leaves and stem: infected tomato plant (A), marginal necrosis of leaf (B), stem splitting (C), hollow pith (D), browning of internal tissues (E).

Figure 2: Symptoms of tomato bacterial canker on young bud and fruit: infected bud of tomato, bird’s eye spots on young fruit
growing areas of Himachal Pradesh, India. The present investigation has firmly indicated the occurrence of the disease in main tomato growing belt of the state. Hence, there is urgent need to develop proper management practices for this disease. So that the losses caused by the disease to the farmers be minimized.

REFERENCES


