EFFICACY OF TEBUCONAZOLE 25%WG AGAINST BLAST AND SHEATH BLIGHT DISEASES OF RICE IN CENTRAL WESTERN GHATS OF UTTAR KANNADA DISTRICT

INTRODUCTION

Rice (Oryza sativa L.) is one of the most important cereal crops of family poeceae. About 90 per cent of world’s rice is produced and consumed in Asia alone. Rice is one of the diverse crops grown in different agro climatic conditions and is the second largest cereal crops in the world, and Asia is the home for more than half of world’s poor and more than half of worlds rice cultivators. Disease management through newer molecules play crucial role as some of the popular varieties are becoming susceptible to blast and sheathblight diseases of paddy.

Blast disease of paddy caused by Magnaporthe grisea B. Couch sp. Nov. is one of the major constraints to rice production. Rice blast more important in upland and rainfed low land ecosystems than in other ecologies. This disease is still remains one among the most serious biotic constraints to rice yield in south Asia. It has been estimated that about sixty per cent of the total yield was affected by blast and approximately 6.5 million tons of paddy lost in Thailand (Disthaporn, 1994). Among the systemic fungicides tested for blast control and the most widely used are kitazin and tricyclozole (Mizutani et al., 1995). Resurgence of resistant strains of M. grisea is a well known phenomena and several research articles have been well documented (Lalithakumari and Annamali 1990).

Sheath blight of rice caused by Rhizoctonia solani is another most important disease of rice occurring in all the rice growing regions of the world causing considerable loss in grain yield (Ou 1985: Savary et al., 2006). Annual yield losses up to 40% were reported with sheathblight under optimum conditions of disease development (Zhong et al., 2007). The importance of these diseases in Karnataka has increased in recent years and appeared in severe form and has caused considerable losses in grain yields during Kharif 2011 and 2012 in hill zone of Uttara Kannada district. Many epidemics of rice diseases have occurred resulting in threat to food security (Thind, 2002).

Currently these diseases are being managed by application of chemical fungicides such as carbendazim, mancozeb, tricyclozole, propiconazole etc. and many workers have reported carbendazim as the most effective against blast and sheathblight diseases (Kumar, 1992: Narayanaprasad et al., 2011).

Though same chemical fungicides are being widely used to control blast and sheath blight diseases, but continuous over use of fungicides leaves harmful residues causing environmental pollution and results in the development of resistance in the plant pathogens. As such experimenting new molecule of fungicides is a continuous process and using single molecule to multiple diseases is yet another challenge to effectively reduce the disease over time and reduce the cost of the grower. Therefore, experiments were carried out to know the effectiveness of new chemical tebuconazole for management of blast and sheathblight diseases of paddy.
Materials and Methods

To know the efficacy of Tebuconazole on severity of blast and sheath blight experiment was conducted during kharif 2010-11 and 2011-12 at Paddy research station of Malagi, Uttara Kannada District. The susceptible cultivar Abhilash was planted in plot size of 4X2 m² in a randomized complete block design with seven treatments and three replications. Thirty days old seedlings of a susceptible rice variety (Abhilasha) were planted and the crop was raised following recommended package of practices. The first spray was given immediately after the onset of the disease and subsequent spray at 15 days interval. The details of the treatments are as follows:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Treatments</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tebuconazole 25%WG</td>
<td>0.1%</td>
</tr>
<tr>
<td>2</td>
<td>Tebuconazole 25%WG</td>
<td>0.15%</td>
</tr>
<tr>
<td>3</td>
<td>Tebuconazole 25%WG</td>
<td>0.2%</td>
</tr>
<tr>
<td>4</td>
<td>Market sample of Tebuconazole 25%EC</td>
<td>0.15%</td>
</tr>
<tr>
<td>5</td>
<td>Kitazin 48 %EC (Check for blast)</td>
<td>0.2%</td>
</tr>
<tr>
<td>6</td>
<td>Hexaconazole SEC (Check for sheath blight)</td>
<td>0.1%</td>
</tr>
<tr>
<td>7</td>
<td>Untreated Control</td>
<td>-</td>
</tr>
</tbody>
</table>

Percent Disease Index (PDI) for blast and sheath blight (before and after sprays) was calculated by using the formula (Wheeler, 1969) and Yield of paddy (q/ha) was recorded and analysis was done using standard statistical methods. In each micro plot 10 plants were randomly selected and graded for blast and sheathblight diseases using 0-9 scale as given below (Anonymous, 2002).

Blast disease scoring (0-9)

- Grades Description
 - 0: No lesions
 - 1: Small brown specks of pinhead size without sporulating centre.
 - 2: Small roundish to slightly elongated, necrotic grey spots, about 1 mm in diameter with a distinct brown margin and lesions are mostly found on the lower leaves.
 - 3: Lesion type is the same as in scale 2, but significant number of lesions are on the upper leaves.
 - 4: Typical sporulating blast lesions, 3 mm or longer, infecting less than 2% of the leaf area.
 - 5: Typical blast lesions infecting 2-10% of the leaf area.
 - 6: Blast lesions infecting 11-25% leaf area.
 - 7: Blast lesions infecting 26-50% leaf area.
 - 8: Blast lesions infecting 51-75% leaf area.
 - 9: More than 75% leaf area affected.

Sheath blight disease scoring (0-9)

- Grades Description
 - 0: No infection
 - 1: Vertical spread of the lesions up to 20% of plant height.
 - 2: Vertical spread of the lesions up to 21-30% of plant height.
 - 3: Vertical spread of the lesions up to 31-45% of plant height.
 - 4: Vertical spread of the lesions up to 46-65% of plant height.
 - 5: Vertical spread of the lesions more than 66% of plant height.

Percent Disease Index was calculated as per the following formula (Wheeler, 1969):

\[
\text{Percent Disease Index} = \frac{\text{Sum of Numerical ratings}}{\text{Total No of plants} \times \text{Maximum grade}} \times 100
\]

RESULTS AND DISCUSSION

Percent Disease Index (PDI)

The leaf blast and sheath blight diseases were observed in the early stages of the crop growth and the incidence of both diseases were considerably more compared to the I season (2010-11). Due to the timely operations and weather conditions the disease did not spread to panicles. Hence, observations were recorded for only the leaf blast incidence. The effect of Tebuconazole 25% WG against blast and sheathblight disease in paddy is presented in Table 1. The treatments differed significantly for the incidence of diseases and yield of paddy at the later stages of the crop growth.

Percent disease index was recorded in all the treatments before spray and results revealed that, no significant difference among the treatments where, the PDI ranged between 10.37 to 15.19 per cent for leaf blast incidence. While, it was ranged from 9.17 to 12.80 per cent for sheath blight disease incidence. However, after two sprays at 15 days interval significant variation was observed in blast disease occurrence between the treatments. The results revealed that, Tebuconazole @ 0.2% (T3) has considerably reduced the blast incidence (13.28%) followed by tebuconazole sprayed @0.15% (T2) where in, blast was recorded 21.96 per cent which is found on par (23.67%) with market sample of Tebuconazole (T4). However, tebuconazole used at 0.1 per cent (25.21%) and kitazin @ 0.2% (26.21%) were found to be the next best effective treatments vis-a-vis untreated control (T7) which has recorded maximum blast incidence of 32.87 per cent. There was no significant difference among the treatments in reducing the sheath blight incidence and ranged from 11.17 to 12.76%. Highest sheath blight incidence was recorded (T7) in the untreated check plots (27.19%). During the second season 2011-12 tebuconazole @0.2% was found significantly superior (22.16%) in reducing the leaf blast incidence as compared to even the recommended check (T5) in which disease recorded was 40.11 per cent and maximum of 71.26 per cent in untreated control (T7). In comparison to 2010-11 sheath blight occurrence was significantly reduced in (T3) which was sprayed with tebuconaazole @0.2% and found on par with (T6) hexaconazole (9.29%) sprayed plots and also which is already in recommendation. The maximum sheathblight incidence (29.13%) was recorded in the untreated control plots (T7).

Yield

The trend in reduction of two diseases of paddy has reflected in the yields (Table 1 & 2). The maximum yield 44.40 q/ha and 39.40 q/ha were recorded in the (T3) plots during 2010 and 2011 respectively. This is found to be on par with T6 (34.73q/ha and 39.10q/h), while treatments T4, T5 and T2 were the next best effective treatments in obtaining the yields. The minimum yields of 27.80 q/ha and 18.12q/h was recorded in the treatments. The results revealed that, Tebuconazole @0.2% and propiconazole have been found highly effective...
Table 1: Efficacy of Tebuconazole 25% WG against blast and sheathblight of Rice(I season)

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Treatments</th>
<th>Dosage (g or ml/lit)</th>
<th>Disease index (%) Before spray</th>
<th>Yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leaf blast</td>
<td>Sheathblight</td>
</tr>
<tr>
<td>1</td>
<td>Tebuconazole 25%WG</td>
<td>0.1%</td>
<td>15.19(18.63)*</td>
<td>12.80(20.96)</td>
</tr>
<tr>
<td>2</td>
<td>Tebuconazole 25%WG</td>
<td>0.15%</td>
<td>9.67(18.05)</td>
<td>9.17(17.66)</td>
</tr>
<tr>
<td>3</td>
<td>Tebuconazole 25%WG</td>
<td>0.2%</td>
<td>12.22(20.44)</td>
<td>10.00(18.43)</td>
</tr>
<tr>
<td>4</td>
<td>Market sample of Tebuconazole 25%EC</td>
<td>0.15%</td>
<td>11.52(19.82)</td>
<td>11.75(20.00)</td>
</tr>
<tr>
<td>5</td>
<td>Kitazin 48% EC (Check for blast)</td>
<td>0.2%</td>
<td>10.37(18.72)</td>
<td>11.33(19.54)</td>
</tr>
<tr>
<td>6</td>
<td>Hexaconazole 5EC (Check for sheath blight)</td>
<td>0.1%</td>
<td>11.52(19.82)</td>
<td>11.75(20.00)</td>
</tr>
<tr>
<td>7</td>
<td>Untreated Control</td>
<td>-</td>
<td>13.97(21.85)</td>
<td>12.25(20.53)</td>
</tr>
</tbody>
</table>

S.Em 1.01 1.31 1.19 0.247 1.09 1.31 1.19 0.247 1.09
C.D at 5% NS NS 3.53 0.76 3.24

Figures in parenthesis are angular transformed values

Table 2: Efficacy of Tebuconazole 25% WG against blast and sheathblight of Rice(II season)

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Treatments</th>
<th>Dosage (g or ml/ha)</th>
<th>Disease index (%) Before spray</th>
<th>10 days After II spray (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leaf blast</td>
<td>Sheathblight</td>
</tr>
<tr>
<td>1</td>
<td>Tebuconazole 25%WG</td>
<td>0.1%</td>
<td>24.16(29.47)</td>
<td>13.20(21.30)</td>
</tr>
<tr>
<td>2</td>
<td>Tebuconazole 25%WG</td>
<td>0.15%</td>
<td>18.56(25.55)</td>
<td>10.61(19.00)</td>
</tr>
<tr>
<td>3</td>
<td>Tebuconazole 25%WG</td>
<td>0.2%</td>
<td>20.37(26.71)</td>
<td>9.68(18.15)</td>
</tr>
<tr>
<td>4</td>
<td>Market sample of Tebuconazole 25%EC</td>
<td>0.15%</td>
<td>21.18(27.42)</td>
<td>12.10(20.36)</td>
</tr>
<tr>
<td>5</td>
<td>Kitazin 48% EC (Check for blast)</td>
<td>0.2%</td>
<td>22.18(28.11)</td>
<td>11.87(20.18)</td>
</tr>
<tr>
<td>6</td>
<td>Hexaconazole 5EC (Check for sheath blight)</td>
<td>0.1%</td>
<td>23.61(29.06)</td>
<td>13.68(21.72)</td>
</tr>
<tr>
<td>7</td>
<td>Untreated Control</td>
<td>-</td>
<td>1.18</td>
<td>1.27</td>
</tr>
</tbody>
</table>

S.Em 1.18 1.27 1.42 1.26 1.29 1.27 1.42 1.24 1.29
C.D at 5% NS NS 3.27 2.76 3.44

Figures in parenthesis are angular transformed values

Table 3: Efficacy of Tebuconazole 25% WG against blast and sheathblight of Rice (pooled analysis)

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Treatments</th>
<th>Dosage (g or ml/lit)</th>
<th>Disease incidence (%) Before spray</th>
<th>Yield (q/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leaf blast</td>
<td>Sheathblight</td>
</tr>
<tr>
<td>1</td>
<td>Tebuconazole 25%WG</td>
<td>0.1%</td>
<td>19.68(26.35)</td>
<td>13.0(21.13)</td>
</tr>
<tr>
<td>2</td>
<td>Tebuconazole 25%WG</td>
<td>0.15%</td>
<td>14.12(22.06)</td>
<td>9.89(18.34)</td>
</tr>
<tr>
<td>3</td>
<td>Tebuconazole 25%WG</td>
<td>0.2%</td>
<td>16.30(23.81)</td>
<td>9.84(18.24)</td>
</tr>
<tr>
<td>4</td>
<td>Market sample of Tebuconazole 25%EC</td>
<td>0.15%</td>
<td>16.35(23.89)</td>
<td>11.92(20.18)</td>
</tr>
<tr>
<td>5</td>
<td>Kitazin 48% EC (Check for blast)</td>
<td>0.2%</td>
<td>16.28(23.81)</td>
<td>11.60(19.91)</td>
</tr>
<tr>
<td>6</td>
<td>Hexaconazole 5EC (Check for sheath blight)</td>
<td>0.1%</td>
<td>18.79(25.70)</td>
<td>12.96(21.05)</td>
</tr>
<tr>
<td>7</td>
<td>Untreated Control</td>
<td>-</td>
<td>1.21</td>
<td>1.18</td>
</tr>
</tbody>
</table>

S.Em 1.21 1.18 1.36 1.26 1.19 1.21 1.18 1.36 1.26 1.19
C.D at 5% NS NS 3.89 3.78 3.57

Figures in parenthesis are angular transformed values

In managing sheath blight of rice (Hunjan et al., 2011). Thus the result indicated that, foliar spray with tebuconazole @ 0.2% and hexaconazole @ 0.1% at disease appearance stage (38 days after transplanting) and 68 days was effective in reducing incidence of both blast and sheathblight diseases and increased the nut yields. These results are well collaborated with the earlier findings (Rao, et al., 2012).

Field efficacy of Tebuconazole @0.1% has considerably reduced the wilt disease of pomegranate caused by Ceratocystis fimbriata (Bhosekar and Ambadkar, 2015).

Hegde (2014) reported the significant reduction of sigatoka leaf spot of banana and maximum yields of banana in the plots sprayed with Hexaconazole @0.1%. Bhuvaneswari and Raju, 2013 reported that, hexaconazole 5%EC @ 2ml/L has considerably reduced sheath blight of rice (13.9%) compared to control (62.4%). Fungicidal control of the sheathblight disease has been successful at field level in majority of the cases (Kandhari et al., 2003). The application of triazole compounds were found effective in reducing the diseases of paddy by other workers (Surulirajan and Khandari, 2003; Krishnam Raju et al., 2008).
In China, Chen et al. (2013) observed that rice pathogen was very sensitive to EBI fungicides such as tebuconazole, difenoconazole, hexaconazole and propiconazole. Effectiveness of Tebuconazole was well proved for the management of stem rot of Groundnut (Sunkad, G. 2012).

The results of present findings are in agreement with Adiver (2007) who reported that triazoles such as tebuconazole, cyperconazole, difenoconazole and diniconazole provide excellent control of foliar fungal diseases and some soil borne diseases including stem rot. Fungicides belonging to triazole group inhibit biosynthesis of ergosterol which plays an important role in structure of cell membrane of fungi (Dahmen, et al., 1989). These fungicides have systemic character and can penetrate the inside of seed and can be used as seed treatment and applied to green plants safely (Sudini et al., 1999). Active ingredients of these fungicides which were determined that have no side effects on groundnut seeds after germination.

Although losses due to plant diseases may be reduced by the use of disease resistance cultivars, crop rotation or sanitation practices, fungicides are often essential to maximize crop yields. Fungicides can play an important role in ensuring crop health security by managing devastating diseases in agricultural crops. Fungicides play an important role in improving food quality and they also contribute to food safety by controlling many fungi that produce mycotoxins such as aflatoxins, ergot toxins, Fusarium toxins, patulin and tenuazonic acid (Knight et al. 1997). Fungicides are now well considered to be the second line of defense in plant disease control after disease resistance (Thind, 2015). It is expected that, fungicides will continue to play a role in disease management programs, especially in intensive production systems. However, to maintain their effectiveness and to minimize their effect on human health and the environment, they should be used in a rational and informed way.

ACKNOWLEDGEMENT

Author would like to thank Excel Crop Science, Mumbai for providing financial support for this research work.

REFERENCES

Plant Dis. 83: 328-332.

