PHYSIOLOGICAL STUDIES IN FUSARIUM SOLANI CAUSING RHIZOME ROT OF GINGER (ZINGIBER OFFICINALE ROSC.)

P. K. RAMTEKE* AND S.S. KAMBLE
Department of Botany, Shivaji University, Kolhapur- 416 004
E-mail: pkramteke@gmail.com

INTRODUCTION
Ginger (Zingiber officinale Rosc.) is an important crop grown for its aromatic rhizomes, used both as a spice and a medicine. In storage, it is affected by several fungal pathogens (Dohroo, 1993), rhizome rot caused by Fusarium solani being the most common (Kumar, 1977), which is generally managed by benomyl. The disease reduced potential yields of ginger to a greater extend in field, storage and market and many losses of even more than fifty percent (Joshi and Sharma, 1980). Ramteke and Kamble (2010) have reported benomyl resistance in Fusarium solani causing rhizome rot of ginger. Studies on abiotic factors associated with disease development will contribute to a better understanding of fusarial diseases (Haware, 1993).

No much information is available on the physiological requirements of benomyl sensitive and resistant isolates of Fusarium solani isolated from ginger. The present study was therefore undertaken to study the effect of carbon and nitrogen sources, temperature, pH and light spectra on mycelial growth of F. solani.

MATERIALS AND METHODS

Physiological studies: Benomyl sensitive (5μg/mL) and resistant (350μg/mL) isolates of Fusarium solani were selected for this purpose from previous studies (Ramteke and Kamble, 2010). Studies of the following physiological aspects of F. solani were conducted in vitro.

Effect of carbon and nitrogen sources
Carbon sources: Five carbon sources viz. sucrose, dextrose, fructose, maltose and lactose were incorporated in Czapek’s Dox agar (Rangaswami and Mahadevan, 2001) medium. Plates without any carbon source treated as control.

Nitrogen sources: Four nitrogen sources viz. sodium nitrate, calcium nitrate, potassium nitrate and ammonium nitrate were amended in Czapek’s Dox agar (CDA) medium. Plates without any nitrogen source treated as control.

Effect of temperature: The sensitive and resistant isolates of F. solani were inoculated on CDA medium and incubated under different temperatures viz. 5, 10, 15, 20, 25, 30, 35 and 40°C in BOD incubator.

Effect of different pH levels: CDA medium was separately prepared and their pH was adjusted to 3.5, 4.5, 5.5, 6.5, 7.5 and 8.5 using hydrochloric acid (0.1N) or sodium hydroxide (0.1N). The pH was measured using electrical pH meter and set before sterilization in autoclave.

Effect of different light: Petri plates containing CDA were inoculated with both isolates and wrapped with gelatine sheets of different colours. Plates kept in dark served as control. All the experiments were conducted in triplicates. Petri plates were inoculated with 8 mm culture discs taken from the periphery of seven days old cultures of both isolates of F. solani and incubated at 26 ± 3°C (except for the study of temperatures). Observations on radial mycelial growth (mm) were recorded after six days in case of effect of carbon and nitrogen sources, whereas effect of temperature, pH and light were recorded after eight days of inoculation.

RESULTS AND DISCUSSION
Effect of carbon and nitrogen sources: Results presented in
figure (Fig. 1) indicated that all the carbon sources were suitable as compared to control which did not contain carbon compound. However, sucrose was found to be the best carbon source for the growth of sensitive (67.33 mm) and resistant (70.33 mm) isolates of *Fusarium solani*. It was followed by lactose, maltose, dextrose and fructose. These results are similar with Olutiole (1978) in case of source for growth of *F. oxysporum*.

Among the four nitrogen sources tested, calcium nitrate was found to be best source of nitrogen for sensitive (79 mm) and resistant (80 mm) isolates of *F. solani*. It was followed by sodium nitrate, ammonium nitrate and potassium nitrate after six days of inoculation (Fig. 2). Little growth was noticed in control which was devoid of nitrogen. Similar observations were made by Sadd and Hagedorn (1970) in case of *Alternaria tenuis* (Syn. *A. alternata*).

Effect of Temperature: In order to know the best temperature for the mycelial growth of sensitive and resistant isolates of *F. solani* eight temperatures varying from 5 to 40°C with an interval of 5°C were tested. Results (Fig. 3) showed that optimum mycelial growth of both sensitive and resistant isolates was obtained at 25°C. The growth of both isolates at 20°C and 30°C was also favourable. However, it was relatively low at 10°C and 35°C. No growth was observed at 5°C and 40°C (Fig. 3). Similarly, Harveson and Rush (1998) reported that *F. oxysporum* f. sp. *betae* has the highest mycelial growth at 25°C. Wakle et al. (2007) have also reported similar findings in case of *F. coeruleum*.

Effect of pH levels: The growth of *F. solani* was observed in all the pH level tested but it was maximum at pH 4.5 where it was 80 mm after eight days of inoculation (Fig. 4). Growth of the both isolates decreased by increasing or decreasing the pH level from pH 4.5 level. Similarly, Taber et al. (1968) found that *Alternaria raphani* grew well over a wide pH range of 4.8 to 7.2. Contrary to this, growth of *F. oxysporum* f. sp. *ciceri* was maximum at pH 7 (Farooq et al., 2005).

Effect of light: Light had little influence on mycelial growth. Among different light spectra, growth was more under green and blue light. However, under dark conditions, it was found best (Fig. 5). Overall results indicated that there was little variation in mycelial growth under different light. This agrees with the finding of Roy and Pande (2009) in case of *Alternaria alternata*, where the growth rates were decreased by exposure to light.

In all the experiments, resistant isolate had higher growth rate as compared to sensitive isolate of *F. solani*. Similar observations were made by Bollen (1971) in case of *Penicillium* species.

Physiological studies revealed that *F. solani* showed a
maximum growth at 25ºC, 4.5 pH and darkness. Sucrose was found to be the best source of carbon, whereas calcium nitrate was the best source of nitrogen. Resistant isolate had higher growth rate as compared to sensitive isolate of *F. solani*.

ACKNOWLEDGEMENTS

The first author is thankful to Shrimant Gayatridevi Bhagawantrao Pantpratinidhi, Chairman, Aundh Shikshan Mandal, Aundh and Principal, Raja Shripatrao Bhagawantrao Mahavidyalaya, Aundh (Satara) for granting study leave and to University Grants Commission, W.R.O., Pune for awarding Teacher Fellowship.

REFERENCES

be distinguished in the text and in the references by letter arranged alphabetically followed by the citation of the years eg. 2004a, 2004b. Standard abbreviations and units should be used, SI units are recommended. Abbreviations should be defined at first appearance and their use in the title and abstract should be avoided. Generic names of chemical should be used. Genus and species names should be typed in italics.

PROOFS AND REPRINTS

Page proofs will be sent by e-mail to the corresponding author. The corrected proofs should be returned to the Executive Editor within 7 days of receipt. The delay in sending the proofs may shift the paper of the next issue. Correspondence through e-mail will be preferred to avoid delay.

No gratis reprints are supplied. Authors have to purchase 25 or a multiple of it (as ordered) by paying the cost decided on the basis of number of printed pages. The paper will not be printed without proper payment of reprint cost in due time.

THE BIOSCAN : SUBSCRIPTION RATES

<table>
<thead>
<tr>
<th></th>
<th>India (Rs)</th>
<th>SAARC Countries</th>
<th>Other Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Year</td>
<td>1,000</td>
<td>2000(I:C)</td>
<td>US $200</td>
</tr>
<tr>
<td>Life Member</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Year</td>
<td>3,000</td>
<td>6000(I:C)</td>
<td>US $400</td>
</tr>
<tr>
<td>Life Member</td>
<td>30,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Life Member will receive the journal for 15 years while other benefits will continues whole life

Note: 25% concession is given to all categories of subscriptions to contributors, students, researchers, scientists, academic and research institutions and libraries on the above mention rates

THE BIOSCAN : MEMBERSHIP FORM

Please enter my subscription for the above journal for the year .. / life member.

Name: ..

Address: ..

E-mail: ...

Payment Rs. : ... by DD / MD in favour of
THE BIOSCAN payable at Ranchi, No. Dated is enclosed.

NOTE: FOR MEMBERSHIP THE ABOVE INFORMATION CAN BE SENT ON SEPARATE SHEET