INTRODUCTION

In developing countries, the frequency of life threatening infections were caused by pathogenic microorganisms has led to increased worldwide and in becoming an important cause of morbidity and mortality in immunocompromised patients (Al-Bari et al., 2006). The historical point, plants have been used as an important source of natural products for human health. All over the world, the antimicrobial properties of plants have been investigated by a number of studies and many of them have been used as therapeutic alternatives because of their antimicrobial properties (Adriana et al., 2007) and they contain secondary metabolites such as alkaloids, phenolic compounds, etc. The practice of complementary and alternative medicine is now on the increase in developing countries in response to World Health Organization directives culminating in several pre-clinical and clinical studies that have provided the scientific basis for the efficacy of many plants used in folk medicine to treat infections (Vijaya and Ananthan, 1997; Dilhuydy, 2003). It is therefore very necessary that the search for newer antibiotic sources be a continuous process. Plants are the cheapest and safer alternative sources of antimicrobials (Pretorius and Watt, 2001; Doughari et al., 2007). According to World Health Organization (Santos et al., 1995) medicinal Plants would be the best source to obtain a variety of drugs. About 80% of individuals from developed countries use traditional medicine, which has compounds derived from medicinal plants. Therefore, such plants should be investigated to better understand their properties, safety and efficacy (Ellof, 1998). In India thousands of species are known to have medicinal values and the use of different parts of several medicinal plants to cure specific ailments has been in vogue since ancient times (Parekh et al., 2005). Medicinal plants are valuable natural resources and regarded as potentially safe drugs and have been tested for biological, antimicrobial and hypoglycemic activity also play an important role in modern medicine (Hassawi and Kharma, 2006; Bhat et al., 2009). It is well known that even the most synthetic drugs have their origin from plant products (Sofowara, 1982). The screening of plant extracts and their products for antimicrobial activity has shown that higher plants represent a potential source of novel antibiotics prototypes (Afolayan, 2003) the selection of crude plant extracts for screening programs is potentially more successful in initial steps than the pure compounds (Kasamato et al., 1995). Such screening of various plant extracts has been previously studied by many workers (Erdogru, 2002; Parekh and Chanda, 2007). Even though hundreds of plant species have been tested for antimicrobial properties, the vast majority of them have not yet been evaluated.

Psidium guajava L, commonly known as guava, of the family Myrtaceae, is a native plant of India. Different parts of the plant are used in the indigenous system of medicine for the treatment of various human ailments such as wounds, ulcers, bowels and cholera (Begum et al., 2002). Pharmacological investigations indicated that its bark, fruit, and leaves possess antibacterial, hypoglycemic, anti-inflammatory, analgesic, antipyretic, spasmylytic and CNS depressant activities (Begum et al., 2002). In Mexico, P. guajava leaves are extensively used to stop diarrhea and its glycosides were its active compounds. The leaves of P. guajava contain an essential oil rich in cineole, tannins, triterpenes and flavonoids (Olajide et al., 1999).

In vitro studies on plants used in traditional medicine have been carried out in the field of microbiology, especially on pathogenic bacterial growth; and some studies were about...
the antimicrobial activity of Psidium guajava (Gnan and Demello, 1999; Jairaj et al., 1999; Nascimento et al., 2000; Ahmad and Beg, 2001; Abdelrahim et al., 2002; Holetz et al., 2002; Voravuthikunchai et al., 2004; Qadan et al., 2005). The present study was undertaken to investigate the in vitro antibacterial activity of water, acetone, chloroform, methanol and petroleum ether extracts from leaves of Psidium guajava.

MATERIALS AND METHODS

Selection of medicinal plant for the study

Identification and preservation of plant materials

Fresh plant leaves of Psidium guajava were collected from the Nagpur area and identified. Plant leaves were washed with 70% alcohol and then rinsed with sterilized distilled water, air dried and stored in airtight bottles at 4°C for further use.

Preparation of crude extract

Homogenized mass of leaves was squeezed in 400 mesh nylon cloth (pore size 37 micron) to obtain crude extract. Crude extract was prepared fresh and used before 2h. Cold extracts were prepared using individual fresh plant leaves.

Crude extraction

Aqueous extraction

Ten gram of dried powder was extracted in 100 mL distilled water for 6 h at slow heat. Every 2 h, it was filtered through 8 layers of muslin cloth and centrifuged at 5000g for 15 min. The supernatant was collected. This process was repeated twice and after 6 h, the supernatant was concentrated to make the final volume one-fourth of the original volume (Shahidi Bonjar, 2004). It was then autoclaved at 121°C and 15 lbs pressure and then stored at 4°C.

Solvent extraction

Ten gram of dried powder was extracted with 100 mL of each solvent (acetone, chloroform, methanol and petroleum ether) and flasks were kept on a rotary shaker at 190-220 rpm for 24 h. Thereafter, it was filtered through 8 layers of muslin cloth and centrifuged at 5000 g for 15 min. The supernatant was collected and the solvent was evaporated to make the final volume one-fourth of the original volume (Shahidi Bonjar, 2004). It was stored at 4°C in airtight bottles for further studies.

Bacterial cultures

The microbial strains are identified strains and were obtained from the National Chemical Laboratory (NCL), Pune, India. The studied bacterial strains were Bacillus cereus NCIM2155, Bacillus subtilis NCIM2063, Bacillus megaterium NCIM2087, Escherichia coli NCIM2931, Proteus vulgaris NCIM2857 and Pseudomonas aeruginosa NCIM5029. Staphylococcus aureus MTCC96 this strain was procured from Institute of Microbial Technology (IMTECH), Chandigarh, India. They were sub-cultured on nutrient agar for every 15 days and maintained on nutrient agar slants at 4°C.

Media

Hi-Sensitivity test broth (M 486) and Hi-sensitivity test agar (M 485) were procured from Hi-media Mumbai, India. The media were prepared according to the instructions given.

Screening for the antimicrobial potential of the plant leaves extracts

The antimicrobial activity of different solvent extracts was evaluated by agar well diffusion (Perez et al., 1990; Parekh et al., 2006) using Hi-sensitivity test agar (M 485).

Preparation of inoculum

A loopful of culture was inoculated from the stock slant culture in 5 mL of Hi-sensitivity test broth and broth was incubated at 35 ± 0.5°C in incubator for 18-20h. After incubation a loopful of actively growing culture was inoculated into 10 mL of Hi-sensitivity broth. Broth was incubated at 35 ± 0.5°C for 6-8h. This culture was used for the inoculation of Hi-sensitivity test agar plates.

Preparation of hi-sensitivity test agar medium

Hi-sensitivity test agar medium was prepared as per instructions of manufacturer. Required amount of agar medium was melted and 25 mL of molten medium was distributed in test tubes (25x150 mm). Medium was autoclaved at 15 lb. for 20 min. After autoclaving, medium was maintained at 45-50°C in constant temperature water bath.

Inoculation of medium with test organism

0.5 mL of 6-8h old test organism is transferred to petridish of 100 mm size (Sterilized in oven at 180°C for 1h) using sterile micropipette. Hi-sensitivity test agar medium maintained at 45-50°C was poured and mixed properly to ensure uniform distribution of organisms with medium. Seeded plates are allowed to set at room temperature.

Preparation of agar well for fresh leaves juice

10 mm borer was used to prepare wells in agar. Four wells per plate at four equidistant corners were made. A 100 μl crude extract (fresh leaves juice) was transferred by micropipette per well. Plates were immediately kept at 4°C in refrigerator for 1h for the diffusion of extract and then shifted to 35 ± 0.5°C in incubator. Zone of inhibition was measured by zone scale after 24 h of incubation.

Preparation of agar wells for different solvent extracts

5 mm borer was used to prepare wells in agar. Four wells per plate at four equidistant corners were made. A 50 μl solvent extract was transferred by micropipette per well. Plates were immediately kept at 4°C in refrigerator for 1h for the diffusion of extract. And then shifted to 35°C ± 0.5°C in incubator. Zone of inhibition was measured after 24 h of incubation. For each bacterial strain, controls were maintained in which pure solvents were used instead of the extract. The control zones were subtracted from the test zones and the resulting zone diameter is obtained (Figs. 1 to 6).

RESULTS

All the microorganisms responded differently to the various plant extracts and standard antibiotics. All the plant extracts and antibiotics tested showed some antimicrobial activity (Table 1). The fresh leaves juice was found to be active against all organisms except Pseudomonas aeruginosa. When we compared the activity of aqueous extract with fresh leaves juice, the fresh leaves juice is more active. The aqueous extract found to be active against Proteus vulgaris and Staphylococcus aureus.
Table 1: Results of antimicrobial activities of fresh leaves juice and extracts of *Psidium guajava* and compared with standard antibiotics

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Microorganisms</th>
<th>Zone of inhibition in mm</th>
<th>Standard antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FJ WE AE ME CE PE Am30</td>
<td>C30 Co25 G50 T30</td>
</tr>
<tr>
<td>1.</td>
<td>Escherchia coli</td>
<td>20 - 17 17 - 16 32</td>
<td>29 24 17 22</td>
</tr>
<tr>
<td>2.</td>
<td>Proteus vulgaris</td>
<td>27 11 15 15 - 16 - 23</td>
<td>31 31 20 16 17</td>
</tr>
<tr>
<td>3.</td>
<td>Pseudomonas aeruginosa</td>
<td>- 21 18 - 18 14 36 -</td>
<td>34 22</td>
</tr>
<tr>
<td>5.</td>
<td>Bacillus cereus</td>
<td>20 - - - - - 15 27</td>
<td>- 23 24</td>
</tr>
<tr>
<td>6.</td>
<td>Bacillus subtilis</td>
<td>13 - 16 16 15 14 31</td>
<td>50 36 40 32</td>
</tr>
<tr>
<td>7.</td>
<td>Bacillus megaterium</td>
<td>12 - 11 10 - 10 29</td>
<td>46 24 23 33</td>
</tr>
</tbody>
</table>

Figure 1: Activity against *Proteus vulgaris* Acetone extract (A)-15 mm Chloroform extract (C) - Methanol extract (M)-15 mm Petroleum ether extract (P)-16 mm

Figure 2: Activity against *Escherchia coli* Acetone extract (A)-17 mm Chloroform extract (C) - Methanol extract (M)-15 mm Petroleum ether extract (P)-16 mm

Figure 3: Activity against *Bacillus subtilis* Acetone extract (A)-16 mm Chloroform extract (C)-15 mm Methanol extract (M)-15 mm Petroleum ether extract (P)-14 mm

Figure 4: Activity against *Staphylococcus aureus* Acetone extract (A)-15 mm Chloroform extract (C) - Methanol extract (M)-15 mm Petroleum ether extract (P)-14 mm

Figure 5: Activity against *Bacillus megaterium* Acetone extract (A)-11 mm Chloroform extract (C) - Methanol extract (M)-10 mm Petroleum ether extract (P)-10 mm

Figure 6: Activity against *Pseudomonas aeruginosa* Acetone extract (A)-21 mm Chloroform extract (C) - Methanol extract (M)-18 mm Petroleum ether extract (P)-18 mm
Acetone, methanol and petroleum ether extracts are active against almost all microorganisms except Bacillus cereus. Chloroform extract is active against only Bacillus subtilis (Fig. 3). All the organisms are susceptible to Ciprofloxacin-Cl\textsubscript{20}, Gentamicin-G\textsubscript{10} and Tetracycline-T\textsubscript{10}. Proteus vulgaris is found to be resistant to Amoxycilin Am\textsubscript{10} Pseudomonas aeruginosa and Bacillus cereus found to be resistant to Cotrimaxozole Co\textsubscript{25}.

DISCUSSION

Successful prediction of botanical compounds from plant material is largely dependent on the type of solvent used in the extraction procedure. Traditional medicinal plants are used primarily water as the solvent but in our studies we found that plant extracts in organic solvent (acetone, methanol and petroleum ether) provided more consistent antimicrobial activity compared to those extracted in water. These observations can be rationalized in terms of the polarity of the compounds being extracted by each solvent and in addition to their intrinsic bioactivity. The traditional healers use primarily water as the solvent but Suresh et al. (2008) found in their study the plant extracts by chloroform provided less consistent antimicrobial activity compared to those extracted by water and other solvents. In our study chloroform extract is found to be active against only Bacillus subtilis. It has been shown that chloroform and its impurities CH\textsubscript{2}Cl\textsubscript{2} and CH\textsubscript{2}ClBr, may react with some compounds as in the case of certain alkaloids (e.g. brucine, strychnine, and ephedrine), producing quaternary salts and other products (Phillipson and Bisset, 1972). Similarly, the presence of traces of HCl may produce decomposition, dehydoration, or isomerization in other compounds (Britton et al., 1991).

Out of all the solvents, water is the most important of all extraction solvents (Mukherjee, 2005). In our study fresh leaves juice showing more consistent antimicrobial activity. It was clear that the methanol extract of selected medicinal plants exhibited high activity against the tested organisms rather than aqueous extract of those plants. Methanolic extracts of plants generally posses terpines and phenolics, which are reported by different workers as antimicrobial compounds (Manach, et al., 2001; Begum et al., 2002; Sanches et al., 2005). Acetone, Methanol and Petroleum ether extract of Psidium guajava showed pronounced activity against all the tested Gram positive and Gram negative microorganisms including Pseudomonas aeruginosa. (Mohamed et al., 1994; Kamath et al., 2008 and Dey et al., 2010). Guava leaf extract have been shown to be effective against many bacterial species known to cause diarrhea, including S. aureus, E. coli and other common enteropathogenic cultures (lairaj et al., 1999; Coutino-Rodriguez et al., 2001). The methanolic extract of P. guajava (leaves) was the only agent showing significant inhibitory (and antidiarrheal) activities.

Guava is rich in tannins, phenols, triterpines, flavonoids, essential oils, saponins, carotenoids, lectins and all those compounds together showing antimicrobial activities (Kamath et al., 2008). Guava extracts of all polarity were found to be active against bacteria, indicating that more than one component may be responsible for the observed antimicrobial activity. Past research findings indicate the presence of polyphenolic compounds in guava, quercitin, avicularin and guaiatverin (Seshadri and Vasista, 1964) being the active antimicrobial components in guava leaf.

These findings support the traditional knowledge of local users about their selection of plant samples as antimicrobial agents and it is a preliminary scientific validation for the use of these plants for antibacterial activity. To promote proper conservation and sustainable use of such plant resources, awareness of local communities should be enhanced incorporating the traditional knowledge with scientific findings. The results of the present study also support the medicinal usage of the studied plants and suggest that some of the plant extracts possess compounds with antibacterial properties that can be used as antimicrobial agents in new drugs for the therapy of infectious diseases caused by pathogens. The most active extracts can be subjected to isolation of the therapeutic antimicrobials and undergo further pharmacological evaluation.

In conclusion Acetone, Methanol and Petroleum ether extracts of the plant parts showed antibacterial activity against disease-causing organisms and this suggest that constituents of the plants could be useful in chemotherapy. From the findings of this study, the following recommendations could be made; Firstly, there is a need to further isolate the active antibacterial agent (s) and secondly, it is necessary to determine toxicity of the active constituents, their side effects and pharmacokinetics effects.

ACKNOWLEDGEMENT

We are thankful to University Grants Commission, New Delhi, India for financial assistance rendered to us.

REFERENCES

ANTIMICROBIAL POTENTIAL OF PSIDIIUM GUAJAVA

be distinguished in the text and in the references by letter arranged alphabetically followed by the citation of the years eg. 2004a, 2004b.

Standard abbreviations and units should be used, SI units are recommended. Abbreviations should be defined at first appearance and their use in the title and abstract should be avoided. Generic names of chemical should be used. Genus and species names should be typed in italics.

PROOFS AND REPRINTS

Page proofs will be sent by e-mail to the corresponding author. The corrected proofs should be returned to the Executive Editor within 7 days of receipt. The delay in sending the proofs may shift the paper of the next issue. Correspondence through e-mail will be preferred to avoid delay.

No gratis reprints are supplied. Authors have to purchase 25 or a multiple of it (as ordered) by paying the cost decided on the basis of number of printed pages. The paper will not be printed without proper payment of reprint cost in due time.

THE BIOSCAN : SUBSCRIPTION RATES

<table>
<thead>
<tr>
<th></th>
<th>India (Rs)</th>
<th>SAARC Countries</th>
<th>Other Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Year</td>
<td>1,000</td>
<td>2000(I:C)</td>
<td>US $200</td>
</tr>
<tr>
<td>Life Member</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Year</td>
<td>3,000</td>
<td>6000(I:C)</td>
<td>US $400</td>
</tr>
<tr>
<td>Life Member</td>
<td>30,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Life Member will receive the journal for 15 years while other benefits will continue whole life

Note: 25% concession is given to all categories of subscriptions to contributors, students, researchers, scientists, academic and research institutions and libraries on the above mention rates

THE BIOSCAN : MEMBERSHIP FORM

Please enter my subscription for the above journal for the year ... / life member.

Name: ...

Address: ..

E-mail: ..

Payment Rs. : ... by DD / MD in favour of THE BIOSCAN payable at Ranchi, No. ... Dated is enclosed.

NOTE: FOR MEMBERSHIP THE ABOVE INFORMATION CAN BE SENT ON SEPARATE SHEET