DISTILLERY SPENTWASH IN THE CONTEXT OF CROP PRODUCTION – A REVIEW

S. K. RAJKISHORE* AND N. S. VIGNESH
Department of Environmental Sciences,
Tamil Nadu Agricultural University, Coimbatore - 641 003, INDIA
E-mail: rajkishoresk@yahoo.co.in

ABSTRACT
Post-methanated distillery spentwash (PMDSW) is a by-product of sugar industry often used as a source of nutrients for a wide array of crops. In the past four decades, PMDSW has been extensively studied in various crop production systems that brought out benefits and concerns associated with this industrial waste water. This review encompasses the impact of PMDSW on changes in soil physical, chemical and biological characteristics, shift in ground water quality, long-term effects and responses of crops. This paper has clearly suggested that the spentwash application has resulted in the changes of soil properties such as impeded hydraulic conductivity, build up of salinity and restricted biological activity transiently as a secondary consequence of intense salt stress. Despite these ill-effects, PMDSW carries macro and micronutrients that facilitate better growth and yield performance in almost all crops that have been experimented. One of the potential hazards associated with PMDSW is the interference with groundwater which is rarely reported or critically analyzed in the context of seasonal and temporal shifts. Overall, this review suggests that the PMDSW can be exploited as a source of nutrients to sustain the crop production with a rider that excessive or continuous use need to be circumvented.

INTRODUCTION
Irrigation water continues to be the single most important factors dictating the success of crop productivity in arid and semi arid agro-climatic zones. In the past five decades, the water availability has reduced to half and further reduction is fast approaching. This necessitates using every drop of water that can be recycled back to the crop production. Sugarcane based industries are increasing exponentially and many factories adjacent with distilleries in order to balance the price of sugar in the open market besides enhancing energy security of the country. In the distillery industry, for every litre of alcohol produced, about 15 litres of spentwash is released as waste water. Different terminologies are used for this type of effluent in different countries viz., stillage, vinasse, slop, dunder, still residue etc. There are 319 distilleries in India with an installed capacity of 3.25 billion litres of alcohol, generating 48 billion litres of raw distillery spentwash annually (Uppal, 2004). Generally the spentwash is discharged into the water bodies. The effluent is therefore, a major course of water pollution. That’s why distilleries have been included in the red category list by the Central Pollution Control Board, India.

The chemical composition of spentwash has been studied extensively and it is well understood that each cubic meter of spentwash carries N, P, K, Ca, Mg, S, and organic matter to the tune of 1.8, 4, 115, 1, 2.2, 2.5 and 30kg, respectively (Sengik and Kiel, 1995). Though the composition varies with the origin of the spentwash, the quantity of nutrients that can be added to the crop production is aplenty. One of the serious concerns of the raw spentwash is the high BOD of 50,000 ppm besides excessive salt load (Valliappan, 1998). In order to suppress the impact of BOD, biomethanation process is recommended wherein the raw spentwash is subjected to anaerobic decomposition process thereby the BOD level is brought down to 85% (Rajkishore, 2008) which is popularly referred as Post Methanated Distillery Spentwash (PMDSW). This wastewater is considered safer to use for crop production as a source of nutrients (Davamani, 2002).

In the past four decades, PMDSW research has been undertaken in cereals, pulses, oilseeds, cotton, sugarcane and vegetable crops. In all the cases, the data have vividly shown that one time land application of PMDSW prior to the cultivation of crops had improved the yield to the tune of 20 to 60 % without associated environmental hazards. However, these studies rarely examined the possible long term impacts of PMDSW on soil characteristics and groundwater qualities. This review has taken painstaking efforts to scan through the literature published in the past and bring out a compendium of dataset that provides insight into the benefits and concerns relating to the usage of distillery effluent in agro-ecosystems.

Characteristics of spentwash
Spentwash is a dark brown coloured liquid with an unpleasant odour of burnt sugar. The raw spentwash is acidic in nature with the pH ranging from 3.8 - 4.2 (Valliappan, 1998; Saliha, 2005; Soundaranagan, 2003), while the primary treated spentwash otherwise known as post methanated spentwash is near neutral (pH of 7.2) in reactions (Rajukkannu et al., 1996). The dark brown colour of raw spentwash is due to the presence of melanoidin of cane molasses which is not decomposed effectively by yeast and methane bacteria in its activated sludge process. In comparison to raw spentwash, the PMDSW contains lower BOD and COD values (Table 1).
The annual treated distillery spentwash obtained in India can supply 16,800 tonnes N, 6,300 tonnes P and 1,26,000 tonnes K and by this it is estimated that Indian distilleries could contribute about 10,000 million rupees annually (Sudaramoorthy et al., 2005).

Effect of spentwash on soil properties

The spentwash, being loaded with organic and inorganic substances could bring drastic changes in the physical, chemical and biological properties of soil (Table 2).

Soil physical properties

Soil permeability and porosity are the important parameters to be considered when planning for liquid waste disposal to agricultural land. In soils, heavy dose of organic carbon compound due to distillery waste disposal may cause high oxygen demand by bacterial activity under anaerobic condition, which will in turn cause a decrease in infiltration rate and a reduction in hydraulic conductivity due to accumulation of solids (Sweeney and Graetz, 1991). Neves et al. (1983) reported that the reduction in hydraulic conductivity by distillery effluent irrigation was due to accumulation of solids at the soil surface. Levy and Vander Watt (1990) observed that increasing amount of K in the exchangeable phase of soil decreased hydraulic conductivity of soils. In contrast to the above statements, Joshi et al. (1996) reported an improvement in saturated hydraulic conductivity and reduction in bulk density of the soil with effluent amendment over the control. Soundararajan (2003) reported that the bulk density of the soil was decreased and the particle density remained unchanged in the spentwash applied soils. Moreover, experiments conducted by Chandra et al. (2005) revealed that application of distillery spentwash increases the soil hydraulic conductivity.

Soil chemical properties

The multifaceted characteristics of spentwash bring about significant changes in the chemical properties of soil. Singh (1969) observed marginal decrease in the soil pH due to neutralized spentwash addition. Conversely, an increase in pH and EC after application of distillery effluent to agriculture fields was also reported (Jadhav and Savant, 1975; Ajamal and Khan, 1988). Mattiazio and Ada Gloria (1985) reported that the organic matter oxidation brought out by microbial activity was responsible for increased pH of the soil treated with distillery effluent. According to Rajukkanu and Manickam (1996), the spentwash application reduced the pH and ESP (Exchangeable Sodium Percentage) to safer limits. However, an increase in pH of the soils observed in the post harvest soils might be due to leaching of soluble salts and the oxidation of organic matter. Subash Chandra Bose et al. (2002) observed a significant increase in the pH of the post harvest soil due to the application of graded doses of primary treated distillery effluent. However, the increase was only by 0.2 units which fall within neutral reactions even at higher dose of distillery effluent (6.25 lakhs litre ha⁻¹).

Soil biological properties

The distillery effluent being rich in nutrients and organic matter was found to improve the soil microbial populations. But observations recorded soon after the application of spentwash on soils showed an initial setback in the microbial populations and enzyme activities (Rajkishore, 2008). Batch et al. (1993) observed that the spentwash @ 250 m³ ha⁻¹ stimulated the soil microorganisms and increased the dehydrogenase activity of the soil. Murugaragavan (2002) reported that the addition of raw spentwash at 125 m³ ha⁻¹ in dry land soils increased the activity of soil enzymes, viz., the phosphatase, dehydrogenase and urease. Further, the application of treated spentwash also increased the activities of these soil enzymes (Rajannan et al. 1998; Nandakumar, 2009).

Effects of spentwash on soil fertility

Every cubic meter of distillery spentwash contains 1kg of nitrogen, 0.2kg of phosphorus oxide and 10kg of potassium oxide. Most of these nutrients are soluble forms and are easily available to plants. Kulkarni et al. (1987) classified spentwash as dilute liquid organic fertilizer with high K content. They observed that N was mostly in colloid form behaving as a slow release fertilizer better than most inorganic N sources.

Macro and micronutrients

Several workers have reported that there was an increase in N status of soil under spentwash application (Scaloppi et al., 1989; Rajukkanu and Manickam, 1996; Rajkishore and Valliappan, 2010a). Mineralization of organic material as well as the nutrients present in the distillery effluent is responsible for increasing the availability of plant nutrients in soil (Somashekar et al., 1984). Valliappan (1998); Baskar et al. (2001); Pushpavalli et al. (2002) suggested that distillery spentwash (treated or untreated) should be applied before planting to give sufficient time for natural oxidation of organic materials, which in turn enhances the soil available nutrients. The available N, P, K and micronutrients such as Fe, Mn, Zn and Cu were increased due to the spentwash application as reported by Gopal et al. (2001), Selvalakshmi et al. (2001) and Annadurai et al. (2001). The availability of Cu, Zn, Fe and Mn was increased in the sodic soil amended with spentwash (Bhanooduth, 2006; Valliappan, 1998). The increased micronutrient availability might be due to direct contribution from the spentwash as well as solubilisation and chelation effect of organic matter (Valliappan, 1998).

Reclamation of sodic soils

The raw distillery spentwash is acidic in nature and rich in Ca and SO₄. Therefore, this could be better utilized as an amendment for reclamation of sodic soils similar to gypsum. Singh et al. (1980) conducted laboratory studies in soil columns to find out the effectiveness of spentwash in the reclamation of a calcareous saline sodic soil. They observed that the application of spentwash increased the rate of water uptake of the soil. The pH was lowered and the salt content was reduced to safer limits after leaching. The application of spentwash in air dried soil followed by irrigation had greater effect than that of spentwash diluted at the time of application itself in reducing the soil pH and ESP. Exchangeable sodium percentage was reduced from 100 to 2 in the top 15cm when spentwash applied equivalent to 100% gypsum requirement. The untreated spentwash has an acidic pH and contains substantial quantity of beneficial divalent cations viz., calcium and magnesium (Jayachandran et al., 1999). So, the spentwash has a high amendment value and comparable to any chemical amendment recommended for alkali soil reclamation.
Valliappan et al. (2001) suggested that one time land application of spentwash at 150 mg kg⁻¹ soil could be a viable technology for reclamation of non-saline sodic soils.

Impact of spentwash on ground water quality

Cruz et al. (1991) studied the nitrate pollution in the ground water due to application of spentwash in the sugarcane field over a period of 15 years. They found nitrate in the ground water but not at levels harmful to human health. Similarly, Orlando (1996) observed no NO₃ pollution due to vinasse application. The analytical results of bore well samples collected from the spentwash irrigated fields (for more than 3 years) indicated that there was no percolation of effluent to the ground water even though it was used continuously (Kotteeswaran et al., 1999). Malathi (2002) reported that no pollution on ground water samples collected from open wells near the spentwash applied farmer's field in Theni district, Tamil Nadu as all the quality parameters were below the critical limits. Jain et al. (2005) showed that the long-term indiscriminate use of PMDSW could lead to significant leaching of inorganic salts. Although leaching of salts has the potential to affect the quality of groundwater, the actual impact will depend on the rate of recharge of groundwater and initial status of groundwater quality. Somawanshi and Yadav (1990) indicated that addition of undiluted spentwash would result in increased salinity of both soil and ground water where there was not sufficient surface leaching of soil solution. Though several piezometric studies have reported that application of treated spentwash at the rate of 100 m³ ha⁻¹ did not contribute for ground water pollution, it is not advisable to apply PMDSW continuously even at doses < 80 m³ ha⁻¹ as there is a possibility of groundwater contamination due to continuous application of PMDSW (Rajkishore and Valliappan, 2010a).

Crop response to application of spentwash

The effects of spentwash on crop production are well documented (Rajukkanu and Manickam, 1997; Banulekha, 2007; Rajkishore, 2008). Table 3 shows the beneficial effects of spentwash on a wide range of agricultural crops. In India, two commonly followed practices for land application of distillery spentwash are single pre-sown application of the spentwash and 4 or 5 post-sown applications of the diluted spentwash (Joshi et al., 1996). Under pre-sown application, fields are flooded with spentwash and allowed to dry for 15-30 days (Rajkishore and Valliappan, 2010a). After the spentwash is dried, the fields are ploughed and in this process the spentwash is degraded and mineralized by soil microorganisms which are later recycled into plant biomass. In case of post sown application, the level of dilution varies from crop to crop (Nandakumar, 2009).

Sugarcane

The sugarcane is the most researched crop with respect to spentwash since this crop is predominantly cultivated around sugar and distillery industries. Guimaratı et al. (1968) reported the optimum dose of spentwash application for sugarcane as 419 m³ ha⁻¹ with N, P and K supplementation. Distillery effluent at the rate of 135 m³ ha⁻¹ in sugarcane was found to increase the cane yield (Cooper, 1975). Gopal et al. (2001) proved that the distillery effluent of 1:10 dilution was optimum for the building up of soil fertility and increasing the yield of sugarcane in sandy soils. Baskar et al. (2001) reported that application of pre-treated distillery effluent (40 days before the planting) at graded doses (0, 0.5, 1.0, 1.5, 2.0 and 2.5 lakh litres per acre) progressively increased the cane yield of sugarcane.

Rice

Devarajan and Oblisamy (1995) reported that 50 times diluted effluent irrigation in rice recorded the higher grain yield and increased the soil availability of N, P, K, Ca, Mg, micronutrients and organic matter contents. However, Rajannan et al. (1998) observed only a normal yield of rice (CO. 43) due to application of spentwash with 50 times dilution. Rajukkannu and Manickam (1996) reported that spentwash applied as amendment to sodic soil at the rate of 5 lakh litres ha⁻¹ increased grain yield of rice. Annadurai et al. (2001) recorded the highest grain yield of rice (ADT 42) for 75 times diluted distillery spentwash treatment, which was on par with 100 times diluted spentwash treatment.

Wheat

Soil amended with diluted post methanated distillery effluent increased the yield of wheat and rice grown in sequence (Pathak et al., 1998). Kundal et al. (2004) also reported that application of post-methanated distillery effluent to wheat resulted in significant improvement in grain yield.

Maize

The cob length, single cob weight, 100 grain weight and grain yield were increased in maize due to the application of spentwash @150kLha⁻¹ (Mallick, 2001). Sridharan (2007) concluded that one time land application of PMDSW @ 60 m³ ha⁻¹ increased the yield of rainfed maize.

Pulses

One time controlled pre-sown application of PMDSW @ 80m³ ha⁻¹ is an optimum dose for achieving the higher yield of rainfed blackgram (Rajkishore, 2008). In addition to this, PMDSW also increased the macro and micronutrient contents of haulm.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>PMDSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.8-4.2</td>
<td>7.2-7.8</td>
</tr>
<tr>
<td>EC (dSm⁻¹)</td>
<td>28-45.2</td>
<td>31-40</td>
</tr>
<tr>
<td>BOD</td>
<td>45,000-96,000</td>
<td>8,000-9,000</td>
</tr>
<tr>
<td>COD</td>
<td>90,000-1,90,000</td>
<td>33,000-48,000</td>
</tr>
<tr>
<td>Total solids</td>
<td>80,000-1,90,000</td>
<td>49,000-51,100</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>8,400-6,100</td>
<td>6,200-7,000</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1,200-5,000</td>
<td>1,200-1,900</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>225- 3,030</td>
<td>280-400</td>
</tr>
<tr>
<td>Potassium</td>
<td>9,600- 17,400</td>
<td>10,500-12,100</td>
</tr>
<tr>
<td>Chlorides</td>
<td>5,000-42,000</td>
<td>7,900-8,500</td>
</tr>
<tr>
<td>Sodium</td>
<td>300-670</td>
<td>621-800</td>
</tr>
<tr>
<td>Calcium</td>
<td>2,100-7,000</td>
<td>1,693-2,400</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1,700-2,100</td>
<td>976-1,900</td>
</tr>
<tr>
<td>Zinc</td>
<td>3.5-10</td>
<td>5.2-7.0</td>
</tr>
<tr>
<td>Copper</td>
<td>2.0-5.0</td>
<td>3.0-4.5</td>
</tr>
<tr>
<td>Iron</td>
<td>25-87</td>
<td>45-63</td>
</tr>
<tr>
<td>Manganese</td>
<td>4.0-5.0</td>
<td>4.5-7.0</td>
</tr>
</tbody>
</table>

(Except pH all values are in mg L⁻¹ unless otherwise stated)
Table 2: Impact of spentwash on soil characteristics

<table>
<thead>
<tr>
<th>Impacts</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse effect on water retention, hydraulic conductivity and water stable aggregates</td>
<td>JadHAV and Savant (1975)</td>
</tr>
<tr>
<td>Mn deficiency in soil</td>
<td>Agarwal and Pandey (1994)</td>
</tr>
<tr>
<td>High K in spentwash was deleterious to soil health.</td>
<td>Biswas et al. (1998)</td>
</tr>
<tr>
<td>Increased organic carbon, Ca, Mg, N, P, K and micro nutrients.</td>
<td>Baskar et al. (2001); Rajkishore (2010a)</td>
</tr>
<tr>
<td>Dose more than 250 m³ ha⁻¹ was detrimental</td>
<td>Mahimairaja and Bolan (2004)</td>
</tr>
<tr>
<td>Increased percent water stable aggregates and water retention capacity, but decreased the penetration resistance and salinity build up observed</td>
<td>Hati et al. (2007)</td>
</tr>
<tr>
<td>Fungi and actinomycetes population were inhibited soon after the application of PMDSW</td>
<td>Rajkishore (2008)</td>
</tr>
<tr>
<td>Macro aggregates high and micro aggregates low in spentwash applied soil</td>
<td>Biswas et al. (2009)</td>
</tr>
</tbody>
</table>

Table 3: Effect of spentwash on agricultural crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugarcane</td>
<td>Improved cane yield upto 250 m³ ha⁻¹ per acre</td>
<td>Baskar et al. (2001)</td>
</tr>
<tr>
<td>Rice</td>
<td>375 m³ ha⁻¹ increased the yield</td>
<td>Subash Chandra Bose et al. (2002)</td>
</tr>
<tr>
<td>Wheat</td>
<td>50 times dilution increased yield</td>
<td>Rajukkannu and Manickam (1996)</td>
</tr>
<tr>
<td>Maize</td>
<td>5 to 150 m³ ha⁻¹ to the non saline sodic soil increased grain yield</td>
<td>Devarajan and Obilisami (1995)</td>
</tr>
<tr>
<td>Redgram</td>
<td>Patbath et al. (1998); Kundal et al. (2004)</td>
<td></td>
</tr>
<tr>
<td>Blackgram</td>
<td>150 m³ ha⁻¹ improved cob length and grain yield</td>
<td>Mallika (2001)</td>
</tr>
<tr>
<td>Groundnut</td>
<td>40-50 times dilution increased shelling per cent, oil and crude protein content.</td>
<td>Devarajan et al. (1998)</td>
</tr>
<tr>
<td>Soybean</td>
<td>30 times dilution increased the yield</td>
<td></td>
</tr>
<tr>
<td>Sunflower</td>
<td>30 times dilution increased the yield and oil content</td>
<td></td>
</tr>
<tr>
<td>Bhendi</td>
<td>50 to 75 times dilution improved the crop quality and yield</td>
<td>Rathsinasamy and Lakshmi-Narashimhan (1995)</td>
</tr>
<tr>
<td>Coconut</td>
<td>pudding 100 litres tree⁻¹ year⁻¹ applied in monthly splits increased the nut yield</td>
<td>Soundarrajan et al. (2007)</td>
</tr>
<tr>
<td>Redgram</td>
<td>30 m³ ac⁻¹ increased the yield</td>
<td>Nagappan et al. (1996)</td>
</tr>
<tr>
<td>Cashew</td>
<td>175 litres /tree increased the yield</td>
<td>Nagappan et al. (1998)</td>
</tr>
<tr>
<td>Turmeric</td>
<td>50 m³ ha⁻¹ as basal + 2.5 tonnes ha⁻¹ biosuper + 75 per cent NPK increased the yield</td>
<td>Davamani (2002)</td>
</tr>
<tr>
<td>Sweet Sorghum</td>
<td>84 m³ ha⁻¹ increased the grain yield</td>
<td>Selvakumar (2006)</td>
</tr>
<tr>
<td>Fodder grass</td>
<td>37.5 m³ ha⁻¹ improved the biomass of Cumbu Napier Hybrid</td>
<td>Banulekha (2007)</td>
</tr>
</tbody>
</table>

shell and grains, nitrate reductase activity in leaves, seed protein and methionine content of blackgram grains (Rajkishore and Valliappan, 2010b).

Cotton

Raw distillery spentwash was found to lower the incidence of two major sap feeding insects in cotton viz., the plant louse and white fly (Sundarmurthy, 1998). In addition the incidence of bollworm was also significantly decreased on cotton crops treated with an insecticide in combination with spentwash. The yield of seed cotton was significantly enhanced by this treatment from 851 (in control) to 1270 kg ha⁻¹.

Oil seeds

Seed hardening with spentwash (10% and 20%) significantly improved the germination and growth parameters of crops like groundnut (VRI-2) and gingelly (CO-1), (Murugaragavan, 2002).

Vegetable crops

In Bhendi (PKM-1), the use of 50 to 75 times diluted spentwash increased its quality and yield (Rathsinasamy and Lakshmi-Narashimhan, 1995). 20 percent increase in the yield of potato as a result of spentwash application was reported by Sharma (2001).

Turmeric

Treated spentwash @ 50kl ha⁻¹ as basal + biosuper @ 2.5 t ha⁻¹ + 75 per cent NPK significantly increased the growth and yield of turmeric (Davamani, 2002).

Sweet sorghum

The highest yield of grain (2.96 t ha⁻¹), cane juice (16.62 t ha⁻¹) and ethanol (2184 litres ha⁻¹) in sweet sorghum were observed for one time land application of PMDSW @ 84m³ ha⁻¹ when compared to 100 per cent recommended fertilizer - NPK and control (Selvakumar, 2006).

Fodder grass

Banulekha (2007) concluded that both PMDSW @ 37.5 m³ ha⁻¹ with supplementation of 25 per cent of recommended N and 60 per cent of recommended P prior to planting improved the biomass yield, quality of Cumbu Napier hybrid fodder upto three cuttings.

Research gaps

Four decades of investigations unequivocally demonstrated that utilization of treated distillery spentwash enhances crop productivity, soil fertility besides saving considerable amount of inorganic fertilizers. However these dataset needs be proved on long term sustainability and stability basis by taking into consideration associated land and water degradation. Though research on utilization of distillery effluent was undertaken for a wide array of crops, almost all published results are restricted to short term field experiments. Researchers should focus on long term effects of spentwash on crop productivity, soil nutrient dynamics, microbial diversity and ground water quality. Some
agricultural universities recommend controlled land application of spentwash once in two years. However, even in such cases, the long term assessment is lacking and it is necessary to pay attention on this direction. Moreover, some of the negative results arising after the use of distillery effluent are often not reported. Only when such information if any is published, the scientific community can resolve for effective utilization of this nutrient rich waste. On the other side, the role of distillery industries is pivotal for ensuring fair conduct of field experiments during research tie-ups with investigating organizations. Though lot of information is available in the area of distillery waste management in agriculture, data on effect of spentwash application on bio-geo-chemical cycles, plant physiological adaptations to excess potassium, quality of farm produce is still lacking.

Lack of extension support from industries
Distilleries disposing their spentwash on land do not give adequate attention to the propagation of applicability of the spentwash for agricultural use. Most of the industries consider it as a waste which has to be disposed clandestinely either to water courses or if possible into the agricultural land. The value of the spentwash as a resource is scarcely recognised. The best strategy to remove these constraints would be to recognize the distillery spentwash as an important source of nutrients for agriculture. However, a sustainable agronomic package has to be developed which ensures increased crop yields without causing any environmental hazards. When these techniques are available to the farmers they can be convinced to accept the practice of irrigating their fields with diluted spentwash which would reduce fertilizer cost especially in rainfed agriculture and augment availability of water for irrigation. Once this nutrient rich liquid waste is recognised as a resource and finds use in agriculture, the basic problem of water pollution will be automatically solved to a great extent.

CONCLUSION
The lessons learned from more than four decades of research in a wide range of crops reveals the various beneficial aspects like increased soil macro and micronutrient status, enzyme activities and improved crop productivity as a result of treated spentwash application to agricultural soils. The existing dataset recommends one time controlled land application of post-methanated distillery spentwash for crop production. Extensive literature review in this area concludes that the controlled land application of post-methanated distillery spentwash is an alternate and effective strategy of disposal which offers double benefit of water pollution control and utilization for agricultural production. However, information is scarce on the environmental impact of distillery spentwash especially in long term application of post methanated distillery spentwash.

REFERENCES
Determination of economic dose of vinasse as sugarcane fertilizer. O. Solo. 8: 102.

Selvalakshmi, M., Balamurugan, J., Rajukkannu, K., Pazhanivelan, S. and Subash Chandra Bose, M. 2001. Fertilization of rice with primary
treated distillery effluent. **In:** National Seminar on use of poor quality water and sugar industry effluent in agriculture. Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Trichy, Feb 5, P.81.

Sharma, O. P. 2001. Use of distillery spentwash in agriculture and its impact on environment-North Indian experience. **In:** National Seminar on use of poor quality water and sugar industry effluent in agriculture. Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Trichy, Feb 5, pp 50-59.

Soundarajan, M., Anandakrishnan, B., Sheik Dawood, M., Bhaskar, M. and Murugesan, R. 2007. Studies on pre-plant application of distillery effluent to sugarcane on different soil type. **In:** National Conference on “Eco-friendly utilization of recyclable organic resources from the sugar and distillery industries for sustainable agriculture” held at Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Tiruchirapalli, March 6 - 7th, p. 47.

Valliappan, K., Rajukkannu, K. and Shanmugam, K. 2001. Reclamation of sodic soils using distillery spentwash - A new approach for sustainable soil health and crop production. **In:** National seminar on use of poor quality water and sugar industrial effluents in agriculture, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Tiruchirapalli, Feb 5, p.73.
INSTRUCTION TO AUTHORS

The Bioscan
An International Quarterly Journal of Life Science

THE JOURNAL
The Bioscan is an international quarterly journal of life sciences with international editorial board. The journal is online and details can be seen (downloaded from the site. www.thebioscan.in). For any query e-mail at m_psinha@yahoo.com & dr.mp.sinha@gmail.com can be used.

AIM & SCOPE
The journal aims to publish original peerly reviewed/referred research papers/reviews on all aspects of life sciences.

SUBMISSION OF MANUSCRIPT
Only original research papers are considered for publication. The authors may be asked to declare that the manuscript has not been submitted to any other journal for consideration at the same time. Two hard copies of manuscript and one soft copy, complete in all respects should be submitted. The soft copy can also be sent by email as an attachment file for quick processing of the paper.

FORMAT OF MANUSCRIPT
All manuscripts must be written in English and should be typed double-spaced with wide margins on all sides of good quality A4 paper.

First page of the paper should be headed with the title page, (in capital, font size 16), the names of the authors (in capitals, font size 12) and full address of the institution where the work was carried out including e-mail address. A short running title should be given at the end of the title page and 3-5 key words or phrases for indexing.

The main portion of the paper should be divided into Abstract, Introduction, Materials and Methods, Results, Discussion (or result and discussion together), Acknowledgements (if any) References and legends.

Abstract should be limited to 200 words and convey the main points of the paper-outline, results and conclusion or the significance of the results.

Introduction should give the reasons for doing the work. Detailed review of the literature is not necessary. The introduction should preferably conclude with a final paragraph stating concisely and clearly the aims and objectives of your investigation.

Materials and Methods should include a brief technical description of the methodology adopted while a detailed description is required if the methods are new.

Results should contain observations on experiment done illustrated by tables and figures. Use well known statistical tests in preference to obscure ones.

Discussion must not recapitulate results but should relate the author’s experiments to other work on the subject and give their conclusions.

All tables and figures must be cited sequentially in the text. Figures should be abbreviated to Fig., except in the beginning of a sentence when the word Figure should be written out in full.

The figures should be drawn on a good quality tracing/white paper with black ink with the legends provided on a separate sheet. Photographs should be black and white on a glossy sheet with sufficient contrast.

References should be kept to a minimum and listed in alphabetical order. Personal communication and unpublished data should not be included in the reference list. Unpublished papers accepted for publication may be included in the list by designating the journal followed by "in press" in parentheses in the reference list. The list of reference at the end of the text should be in the following format.

References in the text should be quoted by the author's name and year in parenthesis and presented in year order. When there are more than two authors the reference should be quoted as: first author followed by et al., throughout the text. Where more than one paper with the same senior author has appeared in on year the references should